首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18808篇
  免费   2809篇
  国内免费   3205篇
化学   18669篇
晶体学   199篇
力学   392篇
综合类   81篇
数学   206篇
物理学   5275篇
  2024年   31篇
  2023年   332篇
  2022年   443篇
  2021年   897篇
  2020年   1030篇
  2019年   769篇
  2018年   625篇
  2017年   692篇
  2016年   974篇
  2015年   869篇
  2014年   972篇
  2013年   1731篇
  2012年   1238篇
  2011年   1202篇
  2010年   1023篇
  2009年   1238篇
  2008年   1238篇
  2007年   1332篇
  2006年   1145篇
  2005年   999篇
  2004年   950篇
  2003年   865篇
  2002年   577篇
  2001年   537篇
  2000年   502篇
  1999年   359篇
  1998年   348篇
  1997年   288篇
  1996年   238篇
  1995年   263篇
  1994年   216篇
  1993年   149篇
  1992年   160篇
  1991年   84篇
  1990年   71篇
  1989年   78篇
  1988年   59篇
  1987年   39篇
  1986年   43篇
  1985年   51篇
  1984年   26篇
  1983年   9篇
  1982年   17篇
  1981年   24篇
  1980年   23篇
  1979年   13篇
  1978年   9篇
  1977年   9篇
  1976年   7篇
  1975年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Smart molecular crystals with light-driven mechanical responses have received interest owing to their potential uses in molecular machines, artificial muscles, and biomimetics. However, challenges remain in control over both the dynamic photo-mechanical behaviors and static photonic properties of molecular crystals based on the same molecule. Herein, we show the construction of isostructural co-crystals allows their light-induced cracking and jumping behaviors (photosalient effect) to be controlled. Hydrogen-bonded co-crystals from 4-(1-naphthylvinyl)pyridine ( NVP ) with co-formers (tetrafluoro-4-hydroxybenzoic acid ( THA ) and tetrafluorobenzoic acid ( TA )) crystallize as isostructural crystals, but have different static and dynamic photo-mechanical behaviors. These differences are due to alternations in the orientation of NVP and hydrogen-bonding modes of the co-formers. After light activation, the 1D NVP-TA crystal splits and shears off within 1 s. For NVP-THA , its photostability and high quantum yield give novel photonic properties, including low optical waveguide loss, highly polarized anisotropy, and efficient up-conversion fluorescence.  相似文献   
92.
Novel Schiff base ligand based on the condensation of 4,6-diacetyl resorcinol with 2-amino-4-methylthiazole in addition to its metal complexes with Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) ions have been synthesized. The structure, electronic properties, and thermal behaviour of Schiff base and its metal complexes have been studied by elemental analysis, mass, 1H NMR, IR spectra, thermal analysis, and theoretically by density function theory. The ligand acted as mononegative bidentate (NO) ligand and all complexes showed octahedral geometry except Cu (II) showed tetrahedral geometry as indicated from the spectral and magnetic studies. The Cu (II), Zn (II) and Cd (II) complexes were non electrolytes while the rest of the complexes were electrolytes. The antibacterial plus anticancer activities of the parent Schiff base and its metal complexes were screened. In addition, the molecular docking study was performed to explore the possible ways for binding to Crystal Structure of Human Astrovirus capsid protein (5ibv) receptor.  相似文献   
93.
The conventional condensation and refluxing process was employed to synthesize Ni(II) and Cu(II) complexes of Methylcarbamatethiosemicarbazone ligand. Reactions were carried out at the pH of 7. The molar ratio of the ligand and metal salt was 2:1. The structures of the synthesized metal complexes were suggested by different analytical techniques such as magnetic susceptibility, molar conductance, IR, EPR and UV spectroscopy. Experimental studies confirmed the octahedral geometry for all the complexes. The geometry of the ligand and complexes were also confirmed by theoretical studies. The complexes were investigated for biological action against pathogenic fungi (C. krusei, C. albican) and bacteria (S. aureus, E. coli). The antimicrobial results confirmed superior inhibition potential of the metal complexes as compared with the parent ligand. The enhanced antimicrobial activities might be due to the chelation. Molecular-docking assays confirmed the strong interaction of ligand with target antimicrobial protein DNA gyrase-B.  相似文献   
94.
In search of antioxidants with enriched potency, the present study focus on the design and synthesis of a dithiocarbohydrazone, H3TCL derived from thiocarbohydrazide and 3-ethoxysalicylaldehyde and its coordination complexes with molybdenum, viz, [MoO2(HTCL)D] ( 1 – 2 ) (where D = methanol ( 1 ), DMSO ( 2 )) and [MoO2(HTCL)D]·DMF (where D = H2O ( 3 )). The synthesized compounds were characterised by elemental analysis, spectroscopic techniques (FT-IR, UV–vis and 1H-NMR), conductivity measurements and cyclic voltammetry. Moreover the solid state structures of all the three complexes were established by single crystal X-ray diffraction analysis as mononuclear neutral species in which the molybdenum centre assumes a distorted octahedral geometry. The dithiocarbohydrazone binds to the molybdenum centre through its phenolate oxygen, O(1), azomethine nitrogen, N(1) and thioenolate sulfur, S(1) in a dianionic tridentate mode. The assessment of intermolecular contacts in the crystal arrangement was quantified using Hirshfeld surface analysis. Further the antioxidant potential of the dithiocarbohydrazone, H3TCL and its molybdenum complexes 1 – 3 were evaluated using 1,1-diphenyl-2-picrylhydrazyl(DPPH), 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and total antioxidant assays. The antioxidant activities were then compared with standard antioxidant, L-ascorbic acid. The antioxidant potential of the synthesized compounds were then validated by molecular docking studies. Molecular modelling study was achieved to evaluate the recognition of target compound at the binding pocket of the human antioxidant enzyme, 3MNG. The docking results showed that the complexes selectively bond to the vital amino acids present in the binding pocket of the target enzyme, 3MNG.  相似文献   
95.
Abstract

An efficient method for the synthesis of α-aminophosphonate derivatives has been developed with different functional groups under catalyst and solvent free conditions at room temperature in both conventional and ultrasonication methods. Ultrasonication method offers excellent yields within shorter reaction times. All the title compounds 4a–l were tested for their antibacterial, antiviral activity using Gram-positive bacteria (Staphylococcus aureus, and Bacillus subtilis), Gram-negative bacteria (Klebsiella pneumoniae and Escherichia coli) and NDV infected embryonated eggs (in ovo) and NDV infected BHK-21 cell lines (in vitro) respectively. Besides, molecular docking studies were also carried out to the title compounds against Hemagglutinin-neuramidase enzyme to determine the therapeutic binding efficacy of the ligands synthesized. The results indicated that, among the title compounds, compounds such as 4f, 4l, 4k, 4b, 4i and 4h have shown high content of antibacterial and antiviral activity than the rest of the compounds and the level activity was high when compared to the standard, ribavirin. Based on the results, it is concluded that, the reported α-aminophosphonates will open new vistas and stands as a new generation of antiviral and antibacterial drug candidates in future.  相似文献   
96.
To achieve unique molecular-recognition patterns, a rational control of the flexibility of porous coordination polymers (PCPs) is highly sought, but it remains elusive. From a thermodynamic perspective, the competitive relationship between the structural deformation energy (Edef) of soft PCPs and the guest interaction is key for selective a guest-triggered structural-transformation behavior. Therefore, it is vital to investigate and control Edef to regulate this competition for flexibility control. Driven by these theoretical insights, we demonstrate an Edef-modulation strategy via encoding inter-framework hydrogen bonds into a soft PCP with an interpenetrated structure. As a proof of this concept, the enhanced Edef of PCP enables a selective gate-opening behavior toward CHCl3 over CH2Cl2 by changing the adsorption-energy landscape of the compounds. This study provides a new direction for the design of functional soft porous materials.  相似文献   
97.
Three novel complexes, namely [Nd·L1·HCOO·(H2O)4] ( 1 ), [Pr·L1·HCOO·(H2O)4] ( 2 ) and [In·L2·Cl·(H2O)2] ( 3 ) (L1 = 1,1-bis(5-(pyrazin-2-yl)-1,2,4-triazol-3-yl)methane, L2 = 1,1-bis(5-(pyrazin-2-yl)-1,2,4-triazol-3-yl)ketone), were synthesized and characterized. The molecular structures of 1 – 3 were confirmed using single-crystal X-ray diffraction. All three obtained complexes are zero-dimensional and connected to each other by hydrogen bonds. In 1 and 2 the metal is surrounded by nine donors and 3 has seven coordination sites. The interaction of 1 – 3 with calf thymus DNA (CT-DNA) was explored using UV absorption spectra and fluorescence spectra. The intrinsic binding constants of 1 – 3 with CT-DNA are about 1.9 × 104, 1.4 × 104 and 1.1 × 104, respectively. Stern–Volmer quenching plots of 1 – 3 have slopes of 0.1508, 0.134 and 0.1205, respectively. The ability of these complexes to cleave pBR322 plasmid DNA was demonstrated using gel electrophoresis assay. Apoptosis studies of the three novel complexes showed a significant inhibitory effect on HeLa cells. Furthermore, MTT assays were used to evaluate the anticancer activity of the three complexes. The cytotoxicity study indicated that complex 1 possesses a higher inhibitory rate of HeLa cells than the other complexes. Especially, the efficacy of 1 was shown to be the highest for cisplatin at 24 h. A further molecular docking technique was introduced to understand the binding of the complexes toward the target DNA.  相似文献   
98.
Microporous carbon shows the highest supercapacitor performance among other carbon nanomaterials, and thus, is considered as the most promising candidate for the fabrication of high-performance supercapacitors. However, it has puzzled the researchers as micropores do not have enough space for the formation of the so-called double layer. Several models have been proposed to explain the mechanism of energy storage by microporous supercapacitors. The most common one is that the micropores are initially filled by both anions and cations, and charging/discharging is via ion-exchange through these single row-filled micropores. Although this theory has been supported by several computational calculations, it is discussed here that this model is in disagreement with the experimental facts commonly accepted in the literature.  相似文献   
99.
The composition of fluorescent polymer nanoparticles, commonly referred to as carbon dots, synthesized by microwave-assisted reaction of citric acid and ethylenediamine was investigated by 13C, 13C{1H}, 1H─13C, 13C{14N}, and 15N solid-state nuclear magnetic resonance (NMR) experiments. 13C NMR with spectral editing provided no evidence for significant condensed aromatic or diamondoid carbon phases. 15N NMR showed that the nanoparticle matrix has been polymerized by amide and some imide formation. Five small, resolved 13C NMR peaks, including an unusual ═CH signal at 84 ppm (1H chemical shift of 5.8 ppm) and ═CN2 at 155 ppm, and two distinctive 15N NMR resonances near 80 and 160 ppm proved the presence of 5-oxo-1,2,3,5-tetrahydroimidazo[1,2-a]pyridine-7-carboxylic acid (IPCA) or its derivatives. This molecular fluorophore with conjugated double bonds, formed by a double cyclization reaction of citric acid and ethylenediamine as first shown by Y. Song, B. Yang, and coworkers in 2015, accounts for the fluorescence of the carbon dots. Cross-peaks in a 1H─13C HETCOR spectrum with brief 1H spin diffusion proved that IPCA is finely dispersed in the polyamide matrix. From quantitative 13C and 15N NMR spectra, a high concentration (18 ± 2 wt%) of IPCA in the carbon dots was determined. A pronounced gradient in 13C chemical-shift perturbations and peak widths, with the broadest lines near the COO group of IPCA, indicated at least partial transformation of the carboxylic acid of IPCA by amide or ester formation.  相似文献   
100.
A combined experimental and computational approach was used to distinguish between different polymorphs of the pharmaceutical drug aspirin. This method involves the use of ab initio random structure searching (AIRSS), a density functional theory (DFT)-based crystal structure prediction method for the high-accuracy prediction of polymorphic structures, with DFT calculations of nuclear magnetic resonance (NMR) parameters and solid-state NMR experiments at natural abundance. AIRSS was used to predict the crystal structures of form-I and form-II of aspirin. The root-mean-square deviation between experimental and calculated 1H chemical shifts was used to identify form-I as the polymorph present in the experimental sample, the selection being successful despite the large similarities between the molecular environments in the crystals of the two polymorphs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号